Solvability of convolution equations in $K^{'}_{M}$
نویسندگان
چکیده
منابع مشابه
Solvability of Systems of Nonhomogeneous Convolution Equations in Convex Domains in C
A criterion for the solvability of systems of nonhomogeneous convolution equations in convex domains on the complex plane is obtained in terms of lower estimates for the characteristic functions of the convolution equations at their noncommon zeros. §
متن کاملSolvability of Diophantine Equations
Attila Bérczes (University of Debrecen): On arithmetic properties of solutions of norm form equations. Abstract. Let α be an algebraic number of degree n and K := Q(α). Consider the norm form equation NK/Q(x0 + x1α+ x2α + . . .+ xn−1α) = b in x0, . . . , xn−1 ∈ Z. (1) Let H denote the solution set of (1). Arranging the elements of H in an |H| × n array H, one may ask at least two natural questi...
متن کاملConvolution Equations in Colombeau’s Spaces
The modified Colombeau’s space Gt is used as the frame for solving convolution equations via Fourier transformation and division. AMS Mathematics Subject Classification (2000): 46F10
متن کاملSolvability of Systems of Linear Operator Equations
Let G be a semigroup of commuting linear operators on a linear space S with the group operation of composition. The solvability of the system of equations /,/ = ,■, i = I, ... , r, where /, e G and j e S , was considered by Dahmen and Micchelli in their studies of the dimension of the kernel space of certain linear operators. The compatibility conditions Ijfr = Irfj , i ^ j , are necessar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hokkaido Mathematical Journal
سال: 1988
ISSN: 0385-4035
DOI: 10.14492/hokmj/1381517804